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Abstract

Poor road conditions are a public nuisance, causing
passenger discomfort, damage to vehicles, and acci-
dents. In the U.S., road-related conditions are a factor
in 22,000 of the 42,000 traffic fatalities each year.1

Although we often complain about bad roads, we have
no way to detect or report them at scale. To address
this issue, we developed a system to detect potholes
and assess road conditions in real-time. Our solution
is a mobile application that captures data on a car’s
movement from gyroscope and accelerometer sensors
in the phone. To assess roads using this sensor data, we
trained SVM models to classify road conditions with
93% accuracy and potholes with 92% accuracy, beating
the base rate for both problems. As the user drives, the
models use the sensor data to classify whether the road
is good or bad, and whether it contains potholes. Then,
the classification results are used to create data-rich
maps that illustrate road conditions across the city. Our
system will empower civic officials to identify and
repair damaged roads which inconvenience passengers
and cause accidents.

This paper details our data science process for collect-
ing training data on real roads, transforming noisy sen-
sor data into useful signals, training and evaluating ma-
chine learning models, and deploying those models to
production through a real-time classification app. It also
highlights how cities can use our system to crowdsource
data and deliver road repair resources to areas in need.

1. Introduction
Potholes and poor road conditions are a menace to society,
causing discomfort to passengers, damage to vehicles, and
accidents. We endure and complain about bad roads, yet
have no way to detect or report them at scale. Meanwhile,
civic authorities are not always aware of present road condi-
tions, and road repairs happen only intermittently.

Due to this inaction from both the consumers (the pub-
lic) and caretakers (civic authorities) of road infrastructure,
poor road conditions have become pervasive, leading to se-
vere consequences. In the U.S., road-related conditions are
a factor in 22,000 of the 42,000 traffic fatalities each year.1
Besides this tragic cost to human life, damage to vehicles
from potholes costs Americans $3 billion a year to fix.2

A key reason for poor road conditions is the information
gap between the public, who travel on bad roads, and civic
agencies, which are in charge of road repairs. To bridge this
gap, we built a system that uses smartphone sensors to clas-
sify road conditions and potholes in real-time. This system
leverages the public’s road experience to inform civic au-
thorities about roads that need repair.

In this paper, we also present a novel approach of using
a combination of gyroscope and accelerometer sensors to
provide insight into the condition of the road being traveled
on. An accelerometer measures the linear acceleration in the
X, Y, and Z directions, while the gyroscope measures the
rate of rotation in each direction. Enumerating the linear and
rotational movement of the phone (and the car) via these two
sensors, we want to accomplish two central tasks:

1. Classify road conditions (good road/bad road)

2. Detect potholes (pothole/non-pothole)

By combining road classification data with insightful road
condition maps, this intelligent system will help authorities
direct repair resources to where they are most needed. This
will improve road conditions and greatly benefit the public.

1.1 Related Work
Several other papers have demonstrated the use of smart-
phone accelerometer data to classify potholes and road con-
ditions, but our approach differs from others in its inclusion
of gyroscope data. Additionally, the deployment of our mod-
els to a real-time mobile app and the ability to produce road
condition maps make our system more practical than others.
These papers are outlined briefly below.

Mednis, et al demonstrate in their paper ”Real time pot-
hole detection using Android smartphones with accelerome-
ters” that smartphones can be used to detect pothole events.
Using a classification scheme that flags accelerometer ac-
tivity that crosses a certain z-axis threshold, their algorithm
detects potholes with true positive rates as high as 90%.3

P Mohan. et al present Nericell, a fleet of smartphones
using an aggregation server to assess road conditions, as well
as a set of algorithms to reorient a disoriented smartphone
accelerometer along a canonical set of axes.4

Eriksson, Jakob, et al use a crowdsourced fleet of taxis
called Pothole Patrol, gathering accelerometer and GPS



data to identify potholes and road anomalies with a mis-
identification rate of 0.2%.5

2. Methodology
Before classifying potholes and road conditions, we had to
collect a considerable amount of training data. We built a
system for collecting and labeling this data via two separate
iPhone apps. Then, we applied various transformations on
the raw sensor data to get a better signal for classification.

2.1 Specifications
All of the data was collected on a 2007 Toyota Prius with ap-
proximately 100,000 miles. Both smartphones used for data
collection were iPhone 6Ss. One iPhone was used for col-
lecting sensor data while the other for recording potholes.
An iPhone suction-cup mount was used to place the iPhone
collecting sensor data on the center of the windshield.

2.2 Variable Definition and Controls
For both of the problems, we needed to establish test groups
and control for confounding variables. In the road condition
classification problem, we reduced the varying degrees of
road conditions to two extremes: good road and bad road.
We did multiple drives on poor quality roads and on good
roads. There was no pothole annotation done on these routes.

For the pothole detection problem, a major confounding
variable was the route used for data collection. Different
routes could have varying numbers and quality of potholes.
In order to control for this and ensure reproducible results,
we decided to collect data on a single route. This route had a
mix of pothole-free and pothole-filled stretches and ensured
that we produced a balanced dataset. We traversed the route,
shown in Figure 1, in only one direction.

Figure 1: Route for collecting training data on potholes

2.3 Data Collection
To facilitate the collection of training data, we built two
iOS applications. One app collected sensor data (Figure
2). Specifically, five times per second, it recorded a UNIX
timestamp, accelerometer data (x, y, z), gyroscope data (x,
y, and z), location data (latitude and longitude), and speed.
This app was run on an iPhone mounted near the center of

the windshield of the car. It was used for both the good
road/bad road and pothole detection problems, since both
needed features on the car’s movement.

Figure 2:
App 1 collected sensor
data (timestamp,
accelerometer,
gyroscope, location,
and speed)

The second app (Figure 3) was used to annotate when a
pothole was driven over - ideally, we wanted to get the ex-
act time when a pothole was hit, but we will later discuss
how we accounted for human error. This app was run on an
iPhone given to a person on the passenger-side, whose job
was to label the potholes. The passenger would simply click
a button when he or she felt a pothole, and the UNIX times-
tamp would be recorded. This app was used for the pothole
detection problem and was run alongside the other iPhone
collecting sensor data.

Figure 3:
App 2 was used for
labeling potholes and
their timestamps



To minimize undesired variance in our data collection, we
set some controls. We used only one driver and one pothole
recorder throughout the entire data collection process.

2.4 Feature Engineering
Once the individual training datasets (sensor data and pot-
hole labels) were collected and combined, we had over
21,300 observations (71 minutes) of raw accelerometer and
gyroscope readings as well as 96 labeled potholes. But since
the sensor data was collected at a high frequency of 5 times
per second, it was likely that the sensors captured some
movements unrelated to vibrations caused by road condi-
tions. So, the individual sensor data points were noisy and
did not capture our variables of interest.

To resolve this issue, we grouped data points into intervals
and calculated aggregate features for each interval from the
individual features. We created a set of 26 aggregate features
for each interval which included:

• Mean accelerometer x, y, z

• Mean gyroscope x, y, z

• Mean speed

• Standard deviation accelerometer x, y, z

• Standard deviation gyroscope x, y, z

• Standard deviation speed

• Max accelerometer x, y, z

• Max gyroscope x, y, z

• Min accelerometer x, y, z

• Min gyroscope x, y, z

Note: Aggregates for x, y, z dimensions for accelerometer
and gyroscope sensors are three separate features.

For road condition classification, we decided to use an in-
terval of 25 data points (5 seconds). We believed that 5 sec-
onds was ample time to assess a small stretch of a road and
classify it as good or bad. After creating the 5-second inter-
vals and aggregate metrics, we attached the corresponding
labels of good road (0) and bad road(1).

For pothole classification, we used an interval of 10 data
points (2 seconds). Since potholes are sudden events, we hy-
pothesized that a shorter interval would be able to capture
them more accurately. For each interval, we attached the cor-
responding label of non-pothole (0) or pothole (1), depend-
ing on whether a pothole occurred during that interval.

Stitching together the sensor data and the labeled pot-
hole data was a non-trivial problem, since labeling the pot-
holes was itself an error-prone task. A person labeling pot-
holes could be too late in clicking the pothole button or may
click the button accidentally. By grouping the points into in-
tervals, we addressed the former since a person could be
slightly late in clicking the button but that interval would
still be labeled as a ”pothole” interval.

3. Data Exploration
We started by visualizing the data we gathered to see if we
ourselves could notice any patterns. Then, and only then,

would we be able to build useful classifiers. The goal of
the following figures is to understand the data and come to
meaningful conclusions that we can then transfer to our clas-
sifiers.

3.1 Time Series
Time series plots helped us understand whether there was
a benefit in using the intervals and aggregate metrics in-
stead of individual data points. Figure 4 shows the compar-
ison between a good road and bad road using individual ac-
celerometer readings (centered). Although there is clearly a
difference between the plots, with the bad road plot having
a higher variance, both of the datasets are noisy.

In contrast, Figure 5 shows the same data, but grouped
into intervals with their standard deviation accelerometer ag-
gregates. Now, the difference between the good road and bad
road data looks more pronounced. Doing this aggregation
extracts the signal from the noise and produces a more sta-
ble set of features to use in our classifier.

Figure 4: Accelerometer readings (centered) for good vs.
bad road

3.2 Road Conditions Data Exploration
Since we were not using time as a feature, we created 3D
point clouds to visualize the data independent of time. By



Figure 5: Standard Deviation of accelerometer readings for
good vs. bad roads

running principal component analysis (PCA), we reduced
the 26-dimensional feature space of the intervals into three
dimensions. Upon plotting the intervals and coloring them
by their road condition label, we found a clear linear sepa-
ration between good road and bad road intervals, as seen in
Figure 6.

3.3 Pothole Data Exploration
Similarly, we ran PCA on the pothole data and plotted and
colored the intervals in their reduced three dimensions. Once
again, we observed a linear separation between the pothole
and non-pothole intervals, as seen in Figure 7.

4. Results and Analysis
After combining data from all of our data collection trips
and generating intervals and aggregate metrics, we trained
several classifiers for both of the classification tasks.

4.1 Road Condition Classification
The road condition dataset was used to trained and evaluate
several classifiers, including support vector machine (SVM),
logistic regression, random forest, and gradient boosting.

Figure 6: PCA of features colored by road conditions

Figure 7: PCA of features colored by presence of pothole

The best results of each classifier can be found in the Ap-
pendix: Table 1. We tuned some of the parameters and hy-
perparameters for each classifier to get the best test set ac-
curacy.

Overall, an SVM with a radial basis function (RBF) kernel
and gradient boosting both achieved the highest test accu-
racy of 93.4%. A baseline model that predicted ”good road”
for all instances would have achieved 82% accuracy. SVM
and gradient boosting did considerably better than this base
rate and are useful classifiers in this problem.

Figure 8 illustrates the selection of the regularization pa-
rameter C for the SVM classifier. Note that the training and
test error are fairly close to each other at the chosen param-
eter value C=250, indicating that the model is performing
well. However, more data and more useful features could be
helpful in further lowering this gap between the training and
test error.

4.2 Pothole Classification
Since potholes are rare events, there was a large class im-
balance in our dataset. Even a naive model that always



Figure 8: Optimizing SVM regularization parmeter

predicted ”non-pothole” for a new interval would achieve
89.8% accuracy on the classification task. So, in this prob-
lem, it was more important to optimize the precision-recall
tradeoff than to focus on accuracy alone.

Like in road conditions classification, the best perform-
ing classifiers were SVM and gradient boosting, with accu-
racies of 92.9% and 92.02% respectively. These accuracies
were somewhat better than the base rate of 89.8% from the
baseline classifier, so at least the classifiers were useful.

The SVM model performed the best in terms of accuracy,
but we wanted to improve its precision-recall tradeoff. The
precision-recall curve in Figure 9 illustrates all the combina-
tions of precision and recall values for different thresholds
on the SVM decision function. The red point in the figure
represents the threshold we chose which gives us a precision
of 0.78 and a recall of 0.42.

This choice is a good tradeoff between correctly flag-
ging potholes (high precision) and detecting all true potholes
(high recall). In this context, a precision of 0.78 means that
when our model classifies an interval as having potholes,
78% of those intervals actually have potholes. A recall of
0.42 means that our model correctly classifies 42% of the
true pothole intervals. Notably, the accuracy of the SVM
model stayed at 92.9% even though we changed the clas-
sification threshold to improve the precision-recall tradeoff.

5. Discussion
In this report, we have presented a publicly available dataset
and examples of using this data for road condition and pot-
hole classification. This data and classification groundwork
lays the foundation for real-time classification applications
that have a high social impact. Additionally, it offers lessons
for doing such work in the future as well as extension points
to improve the work we have done.

5.1 Real Time Classification Application
After successfully building viable models for both road con-
dition classification and pothole detection, we developed a
third iPhone app that does real-time classification for these

Figure 9: Precision-recall curve for the SVM classifier. The
red point is the precision-recall tradeoff we chose.

tasks. While the previous apps were developed to collect
training data, this app can be used to assess road conditions
and detect potholes in the wild. The fitted SVM classifiers
are deployed on a cloud-based web server, and the app is an
interface for using the classifiers.

As the user drives, the iPhone app in Figure 10 collects
data from the phone’s sensors (accelerometer, gyroscope,
latitude, longitude) and sends it to the classification server.
The classification server applies the SVM models to classify
the data and sends the results back to the phone app. The app
then displays the classification results (good road/bad road,
pothole/non-pothole) in 5-second intervals.

Figure 10:
Real-time app displays
road condition and
pothole classifications
in 5-second intervals



5.2 Road Condition Maps
Using classification results from devices running the appli-
cation, we can produce beautiful, data-rich maps of the city
colored with potholes and road conditions, as shown in Fig-
ure 11.

Figure 11: Road condition map of Pittsburgh, PA showing
classification results from the app

5.3 Social Good Application
Crowdsourcing the classification and detection of road con-
ditions and potholes could significantly improve the mainte-
nance of road infrastructure in our cities. One could imagine
the real-time classification app mentioned above being de-
ployed to thousands of devices, constantly collecting road
condition and pothole data from across a city. This data
could be shared openly and combined with insightful road
condition maps to help public works departments direct road
maintenance resources to where they are most needed.

According to Christoph Mertz, Chief Scientist of Road-
botics, smartphone sensors could also be put on public ve-
hicles such as garbage trucks and post office vans, which
cover the majority of a city’s road network. The ability to
create a less invasive method of detecting potholes and clas-
sifying road conditions would make it easier to disseminate
the smartphone app, allowing for the creation of more de-
tailed maps of a city’s road conditions. Our work provides a
basis for further work in crowdsourced public service.

5.4 Failures
While performing this data exploration and analysis, we ran
into many bumps (no pun intended) and had to pivot our
approach and methodologies. Below is a collection of the
failures we had to overcome in order to produce safe and
sound results for this project.
• From the inception of this project, we intended on build-

ing a classifier that works on all roads. Unfortunately, in
order to build a reliable classifier, we would need suffi-
cient data from roads of all types, which would take far
longer than three months. Thus, we found it essential to
select a specific route to classify on. Sticking to one route
ensures that we collect enough data for a reliable classifier
of that particular route.

• Before tackling the precise classification of individual
potholes, we found it helpful to understand road condi-
tions. We wanted to answer the question: can we differen-
tiate between a good road and a bad road? After proving
the feasibility and the accuracy of road condition analysis,
we felt comfortable and confident in moving to pothole
classification.

• A major pivot point for us came when we divided our app
into two separate apps. Instead of collecting sensor data
and tagging potholes on the same phone, we had one app
mounted onto the dashboard collecting data undisturbed,
and the second app was given to the passenger who solely
annotated when the car ran over a pothole.

• On multiple occasions, we lost our collected sensor data
due to a lack of robustness in our original application,
which needed to be loaded onto the phones once every
two weeks. Had we done this project again, we would
have invested time upfront into the applications to ensure
they are reliable and robust during data collection.

• Since we are collecting sensor data five times per second,
we ended up collecting over a thousand data points per
time we traversed our route. When beginning our analysis
on all our data from a given set of trips, we began to get
bogus results; perplexed by what was happening under the
hood, we quickly realized that trying to classify if a given
fifth of a second occurs during a pothole is not insightful.
Creating ten second intervals for detecting road condition
and two second intervals for pothole detection proved to
be more eye-opening. Over those intervals we were able
to extract a multitude of features discussed above.

6. Future Work
There are many extension points from this initial data explo-
ration and classification project. Below are a few examples
of possible future work.

• Expanding the route to collect training data on additional
roads could only help by decreasing the variance of the
models.

• Building a device to solely capture accelerometer and
gyroscopic data (though this does violate the aforemen-
tioned invasiveness) would allow for less variance due to
confounding variables.

• Working to control other confounding variables, like sud-
den changes in acceleration or mere braking, would make
the features of the classifiers more robust.

• Calculating road condition scores (from 1-10, per se)
would help extend this project beyond binary classifi-
cation. These scores can then be mapped onto a given
city/route to denote the conditions of roads comparative
to other roads featured on the given map.

7. Acknowledgments
In addition to continual guidance and encouragement from
Professor Zico Kolter of Carnegie Mellon University’s



School of Computer Science, we are also especially grate-
ful to Professor Christoph Mertz for his insight to use gyro-
scope and accelerometer data to classify potholes. We would
also like to thank Professor Roy Maxion, Professor Max
G’sell, and Professor David O’Hallaron for their patient and
thoughtful advice.

8. References
1. Halsey, Ashley. Bad Highway Design, Conditions Con-

tribute to Half of Fatal Auto Crashes in U.S. The Wash-
ington Post, WP Company, 2 July 2009. Accessed 23 July
2017.

2. The Hole Story. The Economist, The Economist Newspa-
per, 11 June 2016. Accessed 24 July 2017.

3. A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs and
L. Selavo, ”Real time pothole detection using Android
smartphones with accelerometers,” 2011 International
Conference on Distributed Computing in Sensor Systems
and Workshops (DCOSS), Barcelona, 2011, pp. 1-6.

4. Mohan, Prashanth, Venkata N. Padmanabhan, and Ra-
machandran Ramjee. ”Nericell: rich monitoring of road
and traffic conditions using mobile smartphones.” Pro-
ceedings of the 6th ACM conference on Embedded net-
work sensor systems. ACM, 2008.

5. Eriksson, Jakob, et al. ”The pothole patrol: using a mobile
sensor network for road surface monitoring.” Proceedings
of the 6th international conference on Mobile systems, ap-
plications, and services. ACM, 2008.

9. Appendix

Table 1: Road Conditions Classification Metrics
Model Accuracy Precision Recall F1-score
Baseline 0.82 0 0 0
SVM 0.93 0.79 0.85 0.82
Logistic
Regression 0.92 0.68 0.39 0.50

Random
Forest 0.92 0.83 0.72 0.78

Gradient Boosting 0.93 0.90 0.70 0.79

Table 2: Pothole Classification Metrics
Model Accuracy Precision Recall F1-score
Baseline 0.89 0 0 0
SVM 0.92 0.78 .42 0.55
Logistic
Regression 0.92 0.68 0.39 0.50

Random
Forest 0.92 0.75 0.36 0.49

Gradient Boosting 0.92 0.65 0.45 0.54


