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ABSTRACT

Lead poisoning is a major public health problem that affects
hundreds of thousands of children in the United States every
year. A common approach to identifying lead hazards is to
test all children for elevated blood lead levels and then in-
vestigate and remediate the homes of children with elevated
tests. This can prevent exposure to lead of future residents,
but only after a child has been poisoned. This paper de-
scribes joint work with the Chicago Department of Public
Health (CDPH) in which we build a model that predicts the
risk of a child to being poisoned so that an intervention can
take place before that happens. Using two decades of blood
lead level tests, home lead inspections, property value as-
sessments, and census data, our model allows inspectors to
prioritize houses on an intractably long list of potential haz-
ards and identify children who are at the highest risk. This
work has been described by CDPH as pioneering in the use
of machine learning and predictive analytics in public health
and has the potential to have a significant impact on both
health and economic outcomes for communities across the

US.
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1. INTRODUCTION

Lead poisoning is a major public health issue, imposing
lifelong health and economic costs on hundreds of thousands
of children every year in the United States. Although Eu-
ropean states banned lead paint as early as 1909 [19], po-
litical forces and vested business interests delayed bans on
leaded consumer products in the United States until the late
1970s [21]. Throughout most of the 20th century, cars ran
on leaded gas, houses were coated with leaded paint, and
industry emitted leaded waste products directly into the en-
vironment. To this day, lead in paint remains a significant
hazard. In Chicago, almost 90% of the housing stock was
built before the ban |13].

Exposure to lead has been found to be associated with
premature birth and early neurological development issues
such as edema, herniation, atrophy, and white-matter de-
generation |12, [10]. Lead can cause vomiting; convulsions;
paralysis; and, in high concentrations, death [14]. Elevated
blood lead levels are associated with lower 1Qs in children.
A retrospective study by Mazumdar et al [20] shows that, on
average, a 1 ug/dL increase in blood-lead level is associated
with a decrease of 1 IQ point among six-month-olds and 2
IQ points among 10 year olds.

Because of the permanent damage it can inflict, lead poi-
soning imposes significant indirect costs on society. Based
on its well-documented effects on IQ and contributions to
neuropsychiatric disorders such as ADHD, lead poisoning
has been estimated to significantly lower lifetime earnings
for individuals and greatly increase the costs of crime pre-
vention and special-education programs for the government.
Lead-related child health issues conservatively cost over $40
billion annually [18]. Completely eliminating lead in the
United States could indirectly save $200 billion dollars per
year [22], ten times more than needed for removal.
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Figure 1: The proportion of blood lead tests conducted each
year with a concentration greater than 5 ug/dL (blue) and
greater than 10 ug/dL each year (green).

While the Chicago Department of Public Health (CDPH)
devotes an enormous and concerted effort to solving the
problem of lead exposure, it is like many American depart-
ments of public health in its shortage of resources. At cur-
rent levels of funding and staffing, it would take CDPH 76
years and $98 million to inspect—Ilet alone remediate—the
197,157 older buildings in Chicago. The only hope of mak-
ing a significant impact with the available budget is to use
it efficiently.

In collaboration with CDPH, we focused on identifying
children who are at risk of lead poisoning and homes that
are likely to contain lead hazards so that the hazards can be
remediated before the children are poisoned. Our approach
uses two decades of blood lead level tests, home lead inspec-
tions and remediations, housing records, and census data to
build a model that can successfully predict the risk of lead
poisoning for individual children.

Based on these results, we are designing experiments to
pilot the use of these predictions by CDPH to perform proac-
tive home inspections and targeted education and outreach
about lead hazards. In addition, we are working with med-
ical providers in Chicago to deploy our risk score into elec-
tronic medical record systems to raise early alerts for blood
tests in children with high risk levels. This work has been
described by CDPH as pioneering in the use of machine
learning and predictive analytics in public health and has
the potential to have a significant impact on both health
and economic outcomes for communities across the US.

2. CURRENT APPROACHES

The current approaches used to deal with lead poison-
ing are centered around testing children for lead exposure
with blood tests and preventing lead exposure by inspect-
ing homes that contain lead hazards. In this section, we
describe those approaches, their shortcomings, and the mo-
tivation for our work.

The Center for Disease Control (CDC) recommends all
children at risk for exposure get a lead test between one and
two years of age. This is known to be the period when chil-
dren start crawling and exhibiting hand-to-mouth behavior,
which puts them most at-risk for lead dust ingestion .
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Figure 2: A heatmap of lead poisoning cases in 2012. There
are spatial patterns, but space cannot adequately predict
lead poisoning alone. There are too many houses in the
dark-red (poisoned) areas for the city to inspect.

Our data show that lead levels rise during this period, peak-
ing around age two.

Despite this being well known to public health officials,
implementation of these testing recommendations is far from
universal. Often, the children least at risk are the most likely
to be tested early, and those most at risk do not get tested
until well after their period of greatest risk.

In addition to the CDC recommendations, many school
districts, including Chicago Public Schools, require children
to have had a lead test no more than a year before their
matriculation. Again, this requirement may not always be
adhered to and misses the most dangerous window—the first
two years of the child’s life—for lead poisoning. Many of the
most vulnerable children are not getting tested early enough.

Screening of blood lead levels in children identifies cases
but does not prevent their occurrence. Primary prevention
requires that older housing units comply with lead safety
standards before they are occupied by children. Though
screening and primary prevention work are complementary,
the latter is recognized to be more important and far more
cost-effective in the effort to eliminate lead poisoning .

2.1 Problems with current approaches

Despite these guidelines for testing and prevention, prob-
lems remain. First, lead inspections and remediation often
come too late, after a child has been poisoned. A positive
blood test triggers an inspection, and a positive inspection
triggers remediation proceedings. CDPH cannot enforce re-
mediation until a child living in a home tests positive. Sec-
ond, inspectors may focus too heavily on lead paint. While
lead paint is the primary cause of poisoning , there are of-



Probability of lead poisoning, before and after remediation
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Figure 3: Mean probability of a house having > 5ug/dL BLL pre- and post-remediation

ten multiple sources of poisoning, especially for higher blood
lead levels [11]. In 5% of cases, no source can be identified
[8]. Third, lead continues to poison some segments of soci-
ety more heavily than others. A survey conducted in two
of Chicago’s riskiest neighborhoods found that 27% of chil-
dren had elevated blood lead levels and 61% had never been
tested previously |13].

Secondary care is a challenge. Lead paint remediation (the
removal of leaded paint) and soil abatement, even when con-
ducted by a certified professional, can lead to an increase in
BLLs by dispersing lead particulates into the air where they
are more accessible to inhalation |9]. In Chicago, most BLLs
drop following the intervention (Figure7 though the extent
to which this is environmental as opposed to behavioral is
unclear. Worryingly, in 9.3% of the sample, BLLs increased
by at least 5 ug/dL following remediation. Approximately
46% of children with BLLs over 10 did not receive adequate
follow-up testing [16].

2.2 Opportunities for improvement

Since even small quantities of lead are toxic, a transi-
tion from secondary (screening) to primary (pre-emptive re-
mediation) care has the potential to dramatically improve
health outcomes. However, if not implemented efficiently,
prevention could be prohibitively expensive and cannibalize
resources for remediating confirmed cases of lead poisoning.
This is perhaps the chief impediment to adoption of primary
care for lead poisoning.

Fortunately, these challenges of primary care can be mit-
igated by recent advances in computation. Addressing the
scale and complexity of lead-related data is both practical
and affordable. Likewise, recent improvements in the qual-
ity, scope, and availability of data make the task of pre-
dictive lead poisoning prevention feasible. The availability
of public infrastructure data, combined with the digitiza-
tion of medical and inspections and remediation records, of-
fer public-health practitioners the opportunity to model the
risk factors associated with lead poisoning, thereby enabling
them to target interventions, prevent illness, and use their
resources efficiently.
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3. OUR SOLUTION

The solution we developed to predict risk for lead poison-
ing is based on a variety of data sources. We obtained data
from the Chicago Department of Public Health that consists
of blood lead level (BLL) tests and home-inspection records,
combined that with housing records and other public data
(described in detail below), and built a classifier to predict
the risk of lead poisoning. The city of Chicago has adopted
the CDC definition of lead poisoning of a BLL of 5 ug/dL.

Our system consists of the following components:

1. Data Integration and Cleaning
2. Feature Generation

3. Model Selection and Training

4. Model Validation

5. Deployment and Implementation

The next several sections describe each of the components
in more detail.

4. DATA SOURCES

CDPH has two been collecting key data sources that form
the basis of our predictions:

1. Blood Lead Level Tests: We were given the re-
sults of all 2.5 million BLL tests conducted in Chicago
from 1993 through 2013. This corresponds to roughly
1 million children (see Section [5| for record linkage),
with about 40,000 children born in the city every year
and an average of 2.5 tests per child. Clinics submit
the BLL test results to the Illinois Department of Pub-
lic Health (IDPH) and IDPH transfers the results to
CDPH daily.

Home Lead Inspection Records: We were also
given 120,000 home-inspection records from the same
time period (1993-2013). These reports detail the in-
spector’s findings when they are sent to a home sus-
pected of being hazardous. The most important en-
tries in our model are those corresponding to the date
of a house’s initial inspection and the date at which
it was deemed to be in compliance with lead-safety
standards.



We augment these two sources with a variety of publicly
available data. The city’s building footprint data [1] con-
tains building characteristics such as year of construction,
physical condition, number of units, stories (floors), and va-
cancy status. The city also provides shapefiles of the census
tract [2] and ward [3] boundaries. The Cook County Asses-
sor’s Office [5] has data on the assessed property value and
building classification.

The American Community Five-Year Survey [7] contains
census tract variables such as socio-demographics, educa-
tion, health insurance, and home ownership. We also use
the census surname ethnicity data [6], which allows esti-
mates of ethnicity from surname alone. We combine the
probability of an ethnicity given a surname with the prior
probability of an ethnicity given a census tract to get a lo-
cal maximum likelihood ethnicity estimate. Ethnicity was
anticipated to be a predictive variable because of the his-
tory of African Americans being funneled differentially into
lower-quality housing, a process known as “redlining.”

S. DATA INTEGRATION AND FEATURE
GENERATION

Blood test records are recorded manually and individually,
so linking multiple records for a single child requires fuzzy
matching of error-prone names and birthdates. We perform
this using thresholded Levenshtein distances, where date of
birth is a "YYYYMMDD’-formatted string. Because there
are millions of records, we use blocking on initials to paral-
lelize and reduce the complexity of the computation. This
process finds roughly 12% of records contain errors in these
fields.

Home addresses in the blood test records are also prone
to typographic error. Roughly 20% match exactly with our
address dataset. Another 75% match after cleaning using
regular expressions. Another 1% are processed using a fuzzy
geocoder, leaving 4% of test addresses unresolved.

After cleaning, we collect and generate three kinds of fea-
tures:

e Child features: Date of birth, imputed ethnicity (based
on census tract and last name using the census sur-
name data), and imputed gender (sometimes missing

and sometimes conflicting between linked records). There

are a total of 5 child features.

Spatial features: After geocoding the address, we have
a corresponding latitude and longitude. Using the
city’s shapefiles we can match this to a tract and ward
(a neighborhood-scale political boundary in Chicago).

The city datasets are also aggregated to the tract level,
producing features such as the percentage of build-
ings constructed before 1978 (the year lead paint was
banned), the percentage of vacant dwellings, and the
average number of units per building. In total there
are 44 spatial features plus indicator variables for each
of Chicago’s fifty wards.

Spatio-temporal features: These are generated by ag-
gregating the blood test and inspection records in space
and time. We do this spatially at the address and tract
level. The temporal period depends on the frequency
of the event (blood test or inspection) at the given spa-
tial resolution (address or tract). Figure [4| shows the
periods chosen using exhaustive search.
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event
scale - -
inspections | tests
address | all 3 years; all
tract all 1 year

Figure 4: The time periods used for aggregating different
events at different spatial scales.

Blood Tests Children
Home Spatio-
Inspections Temporal
ACS
Model
Assessor Spatial
Buildings

Figure 6: The data pipeline

The aggregate features for inspections and tests are
listed and described in Figure At the spatial and
temporal scales in Figure @ there are a total of 63 such
features.

For each five year period ending in 2009 to 2013, the
5-year ACS survey gives us tract-level statistics. Fea-
tures include educational achievement (e.g. percent-
age of adults who are college graduates), wealth (e.g.
percentage of households below the poverty line), and
health (e.g. percentage of minors that are uninsured).
There are 21 such features.

The data pipeline is visualized in Figure 6. We used
PostgreSQL with the geospatial extension PostGIS for data
cleaning and aggregation. Deduplication and dataset assem-
bly is done in Python and models are run using the scikit-
learn module. The source code is available at the Data Sci-
ence for Social Good GitHub repository [4].

6. EVALUATION METHODOLOGY

6.1 Cross-validation

To evaluate our models, we use a cross-validation strategy
that emulates the way in which our models will be employed
by CDPH and provides an accurate performance estimate.

For a given point in time tg, we train our models only on
information available to CDPH before ¢ty to avoid training
on data from the “future.” The length of the training period
dt is an additional necessary input to the cross validation,
which we measure in years.

Our training set is thus comprised of blood tests occurring
in the dt years before the to. For recent times to, the corre-
sponding training set contains roughly 100,000*dt examples.

Recall that we are interested in predicting childhood lead
poisoning and not individual blood samples. Thus the test-



feature

description

count

tested

poisoned
ebll_count
ebll_prop

avg_bll

median_bll

max_bll

min_bll

std_bll

kid_count
kid_ebll_here_count
kid_ebll_first_prop
kid_ebll_first_count
kid_ebll_first_prop

number of tests

whether there has been a test

whether there has been a poisoned test
number of poisoned tests

proportion of poisoned tests

average blood lead level

median blood lead level

maximum blood lead level

minimum blood lead level

standard deviation of blood lead level
number of children tested

number of children with poisoned tests
proportion of children with poisoned tests
number of children with first poisoned test
proportion of children with first poisoned test

(a)

hazard_int_count
hazard_ext_count
hazard_int_prop
hazard_ext_prop
compliance_count
compliance_prop
avg_init_to_comply_days

feature description
count number of inspections
inspected whether or not an inspection occurred

number of inspections finding interior hazards
number of inspections finding exterior hazards
proportion of inspections finding interior hazards
proportion of inspections finding exterior hazards
number of inspections in compliances

proportion of inspections in compliance

average time from inspection to compliance

(b)

Figure 5: Spatio-temporal features for (a) blood tests and (b) home inspections.

ing examples, unlike the training examples, correspond to
children, not blood tests. Children are included in the test
set if they were born before ¢y and have not been poisoned
as of to. There are about 50,000 children in the test set for
any recent to.

Note this evaluation setup dictates that we cannot use the
(future) dates of a child’s blood test as features in predicting
whether those tests will return positive for lead. However,
we can use the minimum of the child’s age at to and the
mean age of blood testing in the training period. Figure [7]
shows an example transformation.

Also note that the same child may appear in both the
training and test periods if he or she is below the BLL thresh-
old before to but above it after that time. We are modeling
childhood lead poisoning, so we only consider blood samples
up to three years after to. Because we train and test our
models on data through 2013, we can only test on children
born before January 1st, 2011, so that is the maximum tg
we will consider below.

6.2 Metrics

CDPH would deploy our models to rank children (or build-
ings) according to their risk for getting (or causing) lead poi-
soning. Due to limited resources, CDPH can only investigate
a subset of cases. Therefore we measure the performance of
a model by computing its precision in the examples pre-
dicted to be most at risk by that model. In this way we can
estimate how many cases of future lead poisoning would be
found, and so potentially ameliorated or avoided, if CDPH
investigated a given number of cases.
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Figure [§] shows the precision at different proportions of
intervention for several model types evaluated at two dif-
ferent years. The baseline here and henceforth is given by
random classification and so is equal to the incidence of lead
poisoning in the test set.

For simplicity the evaluations below will use precision in
the top 5% as a representative metric. This choice is based
on our observation over hundreds of model runs that this
number is representative of precision at the top. That is,
if the model A dominates model B at 1% then it unlikely
that B dominates A at 10%. Note that 1% to 10% amounts
to about 500 to 5,000 children (per year). This range is
representative of the numbers that CDPH is considering for
various interventions.

After tweaking each model’s parameters, we observed sim-
ilar performance for logistic regression, random forest, and
support vector machines. See Figure [J] for a comparison of
the best models of each type. Based on this observation,
we use logistic regression as a representative model for the
following evaluations.

7. MODELS AND RESULTS

Once our dataset is assembled, we train a variety of clas-
sification algorithms including logistic regressions, support
vector machines, and random forests.

Here we present the results of running a variety of models
to find optimal parameters and measure the value of different
kinds of features.

By varying the number of years in the training period, we
determined that approximately three years of training data



child | birth inspection | test BLL
1 2010-1-1 | null 2010-9-1 1
1 2010-1-1 | null 2012-6-1 | 7
2 2010-6-1 | 2011-2-1 2011-3-1 | 5
3 2011-3-1 | 2009-1-1 2011-11-1 | 1

(a)

child | birth inspection | test poisoned
1 2010-1-1 | null 2010-9-1 | True
1 2010-1-1 | null 2012-6-1 | True
2 2010-6-1 | null null False

(b)

Figure 7: Example record transformation with ¢t0=1/1/2011. Changes to prevent leakage are italicized. The first row is in
the training set, the next two are in the test set, and fourth row is discarded.
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baseline

— LogisticRegression

Figure 8: Precision at different proportions of investigation
for different model types for the same year.
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Figure 9: The best models of each class perform comparably
across years.
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Precision in top 5%

.00 i I I i i i I
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year
— 1year — 5 years — baseline
— 3 years — B years

Figure 10: Performance plateaus after about three years of
training data.

is optimal. See Figure Note that the training period
determines which blood samples are seen by the model but
that all training examples include spatio-temporal features
that draw on the entire history (blood tests and inspections)
of an address or tract.

By fitting the same model on an increasing set of features
we can observe the value added by those features. Figure
shows that as we refine the spatial scale of our features
the model improves dramatically, with address-level features
(building age, condition, and history of lead poisoning and
inspections) being especially important.

We can also categorize features as they were presented
in Section [5} Figure [12] shows that the spatial and spatio-
temporal aggregations are very important.

We use the l1-penalized (inverse regularization coefficient
C = .001) logistic regression for feature selection. We ex-
amine the most important features as measured by the mag-
nitude of their (normalized) coefficients. Figures [14] and
show these features having negative and positive coefficients
respectively, i.e. corresponding to reduced and increased
risk for lead poisoning, respectively. See the captions for a
descriptions of the features.

8. IMPLEMENTATION

Based on the encouraging results of our experiments de-
scribed in the previous section, this section focuses on how
CDPH is using our predictive models to prevent lead poison-
ing. Currently, Chicago requires doctors to determine the
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Figure 12: Increasing precision as we supplement the child
features with spatial features and spatio-temporal features.
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feature coefficient
test_kid_age_days 0.224396
address_assessor_age 0.193478
address_tests_3y_kid_ebll_here_prop | 0.166018
tract_tests_ly_kid_ebll_here_prop 0.145755
address_tests_3y_kid_ebll first_prop | 0.092541
address_tests_all_ebll_prop 0.052439
address_tests_3y_ebll_count 0.043917
tract_tests_ly_kid_ebll_here_count 0.028020

Figure 13: Features with positive standardized coefficients
(increased risk for lead poisoning) in a regularized logistic
regression. In order, these are the age of the child at the time
of testing, the age of the home according to the assessor, the
proportion of children tested at this address in the past three
years who were poisoned first at this address, the proportion
of children tested at this tract in the last year who were
poisoned first at this tract, the proportion of blood tests at
this address that were poisoned, the number of blood tests
at this address in the past three years that were poisoned,
and the number of children poisoned on this tract in the
past year.

feature coefficient
acs_byr_race_pct_white -0.084256
acs_byr_health_pct_insured_employer | -0.079481
acs_byr_edu_pct_ba -0.020562
tract_inspections_all compliance_prop | -0.019487
address_building_year -0.019209
acs_byr_edu_pct_advanced -0.012124
address_tests_all_tested -0.010470
address_lat -0.007380

Figure 14: Features with negative standardized coefficients
(decreased risk for lead poisoning) in a regularized logistic
regression. In order, these are the percentage of the census
tract that are white, the percentage of the tract that have
employer health insurance, the percentage of adults with at
least a bachelor’s degree, the proportion of all inspections
on this tract which have been complied, the year the home
was built according to the buildings department, percentage
of adults on the tract with an advanced degree, whether or
not a child has been previously tested at this address, and
the latitude of the address.



BLLs of all young children, regardless of housing age or the
absence of other risk factors for lead exposure. This require-
ment is often ignored. Medicaid also requires two blood tests
by age two. In the near future, these requirements will be
loosened or will be ignored even more frequently as the risk
of elevated lead exposure continues its rapid decline. This
will increase the need for and usefulness of a tool that al-
lows stakeholders to better assess risk and take preventative
actions as warranted.

There are several ways that CDPH is planning to use the
risk model. Each method involves a variation on dissemi-
nating the risk score to participants in a young child’s life
who provide medical care, child rearing, or housing and ed-
ucating them on how to use this to reduce exposure to lead.

For pregnant women and parents of young chil-
dren, CDPH is using billboard advertisements to encourage
them to request home inspections. The risk score for these
homes will be used by CDPH to prioritize inspections. In
addition, publishing and publicizing the risk scores of hous-
ing allows this target audience to choose low risk housing
when they are moving or request an inspection to determine
if there are actual lead-based paint hazards. Even when no
hazards exist, a high risk score may prompt families to make
other behavior changes that minimize exposure from exte-
rior soil (e.g. removing shoes, covering bare soil) and water
(e.g. flushing) and more carefully monitor the child’s diet
to reduce absorption.

For doctors and other health care providers, know-
ing the risk score for a child can allow them to provide advice
to the family regarding inspections and other exposure re-
ducing practices. CDPH is recruiting health and social ser-
vice providers to facilitate lead-based paint hazard inspec-
tions by city inspectors when their patients who are perina-
tal women live in high-risk housing. In addition, the CDPH
is actively trying to pilot an effort where risk scores are in-
corporated into a child’s medical record thus being available
to the doctor during well-child visits.

For landlords and housing providers, CDPH is devel-
oping a program of outreach and education. For large land-
lords, CDPH will disseminate risk scores for their properties
and encourage them to discuss and negotiate a maintenance
plan with the inspectors to reduce the risk of exposure from
current hazards and avoid hazardous maintenance and ren-
ovation practices. For home owners, CDPH will use the risk
score to prioritize free inspections; CDPH has funding to
pay for remediation for poorer owners and residents, which
reduces the chance that the family will be burdened by un-
sustainable expenses required after the inspection.

9. THE PROMISE OF LIFETIME TRAJEC-
TORY MODELING

While this paper describes in detail one model that was
used, there are many other possible approaches to this prob-
lem and several others that are already being explored. One
approach attempts to predict later lifetime exposure from
infancy, using features on the child at birth, or from early
doctors visits. The rationale relies on the idea that trace
amounts of lead, perhaps acquired from the air or even from
the mother, indicate much higher amounts of environmental
lead. The infant is not yet at risk from these sources exclu-
sively because of their inability to crawl. While measured
levels at infancy might be below the CDC threshold, not
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BLL

| — high risk medium

Figure 15: Lifetime trajectories from aggregated data

giving a doctor quantitative cause for concern, they might
also be strong indicators that the threshold will be crossed,
once crawling begins — allowing a critical window of up to
several months for remediation. In addition to being strictly
preventative, this approach has the added significant bene-
fit that it could be included as a part of post-natal doctors
visits, meaning a schedule of opportunities for an early test
is already in place.

While few features and few tests were available for an in-
dividual, there was sufficient variation in age at the time of a
test to construct rough canonical lifetime trajectories by ag-
gregating tests from many children. In other words, “average
BLL at age X” could be calculated easily. One such trajec-
tory was constructed for each census tract in the city, and
these trajectories were clustered into low, medium, and high
risk. These clusters were cleanly distinguishable even during
the period prior to the jump in lead levels that takes place
when crawling begins — suggesting that with more features
(and aggressive early testing), this approach has significant
preventative potential.

10. CONCLUSIONS AND FUTURE WORK

Thousands of Chicago children are poisoned by lead every
year, incurring great health and social costs to the city in
both the short and long term. We developed this model in
conjunction with the Chicago Department of Public Health
to help them prioritize their inspection and testing sched-
ule. Using blood tests, home inspections, county land assess-
ments, and census data, the model produces more accurate
predictions of lead risk than what CDPH had available.

CDPH is working to implement this model in several ways.
CDPH has deployed billboards encouraging families to con-
tact the city for free home lead inspections; CDPH will use
the model to prioritize which houses to target first. CDPH
also plans to make house-level risk scores available to the
public so families can better choose where to live or, if they
live there, to minimize their risk. CDPH is working to inte-
grate the model into local electronic medical record systems
to encourage health professionals to engage families at risk.



Finally, CDPH plans to use the model to work with large
landlords to rid their properties of lead hazards.
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